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- 
windowing and averaging requirements in forming the covariance

matrix. Chapter 5 develops the statistics of the different

forms of the estimators. Finally, chapter 6 presents the

experimental results and conclusions. The Appendicies include

some of the detailed calculations used in Chapters 4 and 5,

and a glossary of symbols. 
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Chapter 1 Array and Travel Path Geometries and Travel
Time calculations.

Introduction

Before addressing the problem of estimation of seismic

velocities, it is helpful to review some of the physical

properties of the general seismic reflection problem. In

this chapter we review the general array and signal path

geometries and develop the commonly used RMS velocity travel

time equation . The travel time, the time required for a

signal to traverse a path from the source to a reflecting

interface and back to a receiver, is one of the most important

properties in the estimation of velocities. We calculate

the travel time as a function of the source to receiver

distance for a particular depth of, and RMS velocity to a

reflecting surf~:.- .~. We can then generate a pattern of delays

(or, in the frequency domain, phase shifts) that allow us to

steer or phase the array to look for coherent returns as a

function of velocity and depth.

Travel time calculations can become very complicated

for any but the simplest geological models, and we find that

simplifications of the geological models and approximate

solutions are desirable and necessary for our purposes in

velocity/depth spectra estimation. The RMS travel time

—- —- 
-
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equation is a truncated series approximation of the travel

t imes to interfaces in a horizontally homogeneous layered

earth model. It is a particularly convenient model because

it has a closed form solution and because it simplifies the

velocity dependence of the delay pattern to a single average

velocity rather than the entire velocity structure of the

travel path.

In the remote measurement of seismic velocities, we

measure the delay and curvature of a wavefront that has

originated at a point source at the surface and has penetrated

the earth to reflect from some lateral inhomogeneity in the

substrate. The most common instrumentation used to measure

the curvature of the wavefront is an array of hydrophones

or geophones un iform ly spaced along the surface at increasing

distances from the source. The source generally gives an

impulsive signal, although longer coded signals which can

later be deconvolved or matched filtered are sometimes used

(i.e., a chirped signal). For a single homogeneous layer

the geometry is shown in Figure l.la. This is the exact

geometry for the first return in the case of a homogeneous

and horizontal first layer. In marine data, it is the water

column return when there is a flat bottom. If the reflected

image is unfolded (Figure 1.lb) and projected to an array

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Figure 1.la Array and Travel Path Geometries for
a Single Homogeneous Layer.

I-. X N

Figure 1.lb Single Layer Travel Path Unfolded.
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below, it is easily seen that the wavefront is spherical

and the raypaths are straight lines. The travel time to a

receiver may be written as

~ J(2Dt + 

_ 2 

1.1

where C is the wave group velocity . We note that for conven-

ience and in order to maintain consistency , we will use the

unit of vertical two—way travel time T0 to specify the

depth of a reflector throughout the remainder of this study.

Since the data is a function of time, this parameter is much

easier to correlate with the data than would be depth in

linear dimensions.

In the case of a non—constant sound velocity with depth,

we can no longer assume straight line travel paths or perfectly

spherica l spreading . The rays will instead follow minimum

travel time paths as given by Fermat’s Principle. We can

use Snell’s law and ray path theory to solve for the travel

time exactly, but the expression is a function of the initial

angle and must be solved parametrically .

In order to generalize this exact form of travel time

calculation , we consider a layered earth structure consisting

of horizontal homogeneous layers. In the limit as the number 

-*~~~~~--- ~~------- -
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of layers goes to inf inity and the layer thicknesses go to

zero , this model may represent any horizontal ly homogeneou s

velocity structure. The multi-layer case is depicted in

Figure 1.2. The ray parameter ) =  c1/cos4~ is preserved as

the wave travels through the layers. The time through a

particular layer is

= 
~~~~~~~~~~~~~ 

= 1.2

where is the normal incidence travel time through the

1th layer. See Figure 1.3. Summing to the m
th 

layer, we

obtain a two—way travel time of

— 

~~~~~~~~~ 
1.3

The horizontal distance traveled in passing through each

layer is

C1 t~5in~~ t . ( A ~ — C ~~) 1.4

Summing this over a two—way trip through m layers gives us

the total horizontal distance traveled.

_ _
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Figure 1.3 Details of One Layer of a Multi—Layer Travel
Path. (Dimensions in Seismic Travel Time).

t,1 t,1/cos W1 C,

tsin~
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• x = a f . L1(?.~-c3 2 
1.5

Given the source to receiver distance , we can solve

Equation 1.5 for A. Inserting X into Equation 1.3, we can

then solve for the travel time T
3
. For the special case

where the velocity in all the layers is the same , c1 = C
1

for all i, the equations simplify to

A -1-• — CI ° 1.6a

x (7~
2 - C ,~) -i:

where J L Zt1,. 
• 1.7

Solving to eliminate A ,  we obtain

2

T = 
~~ 1.8

This is identical to our result for the single layer case.

A much simpler solution was proposed by Dix (1955),

which was a special case of a genera l solution presented by

Durbaum (1954). A brief summary of the solution may be found

in the appendix of Taner and Koehler (1969). We again refer

-. —~ ---- ----~~~ -- -- ~~~~~~~~~~ - - - - - - ,.sr ~~~~~L 
-- ~~~~~~~~~~~~~~~~ .
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to Figure 1.2 for the travel path geometry for a separated

source and receiver. Following Taner and Koehler , we wr ite

the travel time T as an infinite series in powers of X , the

source to receiver distance.

Ta 
~ A0 ~ A, X

2 
~ A,. X

4 A3 Xl’ ~ - 1.9

Solving for the first two coefficients, we obtain

A0 — 1.lOa

A, = [A 0] ,,~/2 ~, 
c~t01 - [i,~, ~

) 1.lOb

An approximation using the first two terms of the series

gives us an equation that is very similar to the expression

for the travel time through a single homogeneous layer. If

we define

~ 1.11

where C is a time weighted Root-Mean-Square velocity, we

obtain a travel time expression of the form

--  
~~~~~~~~~~~

-- --
~~~~

5- ,  -—--
~~~~~~~~~~~~~
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+ 
* 

x 
1.12

This is the most common travel time expression presently in

use. T0 is the two-way normal incidence travel time to the

layer of interest. C is known as the RMS or stacking velocity.

We note that it is not a true velocity, but is the first order

term describing the hyperbolic curvature of the wavefront.

For normal array lengths and for normally encountered seismic

velocity variations, the accuracy of this approximation for

the model is better than 2% (Taner and Koehier , 1969).

If it becomes necessary to go to the next term in the

series, the model becomes much more complicated. The coef-

ficient for the next term is

A = 
(~~

‘ ctt.j

2 

~~~~~~~~~~~~~ 
1.13

I é ( E t ~c~)

Although we can find no physical quantity corresponding

directly to this term, it is a measure of the variation in

layer velocities. A2 goes to zero for C1 
= c1 for all i.

We expect this term to be the first order variation from a

hyperbolic wavefront shape. A2 may be shown to always be

less than or equal to zero by the Schwartz inequality .

— . - .-. ..

~ 
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The assumptions incorporated in the RMS travel time

model are the horizonta l homogeneity of the velocity structure,

and ( for A2 to be small) an absence of extreme variations in

the vertical velocity structure. In addition, all of the

calculations we have considered so far require that the array

length be small enough that there is always a vertical corn—

ponent to the velocity vector; that the travel path does

not include wholly refracted segments. To put it another

way, we must always be close enough to normal incidence so

that the interaction with the lowest interface is strictly

reflection. As the travel path deviates from vertical, the

approximation in the model becomes poorer and poorer.

The most common deviation from the assumptions of the

model is that there is usually some slope to the structure,

both in the geology and the velocity. Solving for the first

order correction to the model for uniform sloping layers,

we find that the model is fairly robust to small slopes.

From model studies and least squares fitting of real data,

Taner and Koehier (1969 ) show that the return s from mild ly

dipping layers are still very closely hyperbolic in form.

Solving for the delay times about a common central ground

point for the dipping single layer case (see Figure 1.4),

we obtain
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Figure 1.4 Dipping Single Layer Geometry.
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2 _ T~~ ~~
. X I jI. -~r~~ Lt. J 1.14

The dipping layer always flattens the travel time curve and

increases the apparent velocity. Taner and Koehier (1969)

extend this to multi-layered cases. With all other parameters

held constant, increased dips produce higher apparent velocities.

Butt although the apparent velocities vary, it is important

that it is still possible to closely fit the delay pattern

with a hyperbolic model.

Finally , we note that it is a simple process to take

the velocity structure in RMS velocities and calculate in-

terval velocities. The interval velocity between interface

i and i+]. is given by

I” ~~~ L ’ ~’ 
— 

7 )  Zt~,, 1.15

Summary

In the RMS travel time model we have a simple and efficient

means of calculating the travel time delays for the multi-

channel array. The model assumes a horizontally homogeneous

acoustic velocity structure for the travel paths , although

it appears to be robu~~to small dips. It is most accurate 

... . -
‘— 

-—-5-, - —--5— - - -5— ___-,~~._~~~~~~~ _____._-.__~ ____



F ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

32

near vertical incidence and for structures without major

deviations in velocity. The model becomes invalid as any

part of the travel path approaches a refracting (i.e. hori-

zontal) condition. With a means of relating velocity and

depth to parameters that are directly measurable, we can

now look at the estimation procedure.

L: - - “ - 5 , , . 5 - --. , -- -
- - ,~~~ .— - , . - - .. . S J  . -..~~ -
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Chapter 2 Estimation of the Velocity Function.

Introduction

In this chapter we develop the concept of a velocity/

depth spectrum and present the mechanics of its estimation.

The form and general structure of the data are examined and

the estimation procedure is segmented into a two step oper-

ation. The contribution of each step toward the overall

resolution is examined , and areas of needed improvement ident-

ified. The first step, the windowing, is shown to be a criti-

cal , although often subtle, part of the estimation procedure.

The second, a beamforming or coherent power estimate, is the

operation to which we intend to apply the adaptive procedure.

The conventional velocity/depth estimator is developed using

a beamformer approa ch , and then an adaptive form of this is

derived from an adaptive wave number estimator. Finally, the

adaptive form is shown to be computationally similar to the

conventiona l estimator , and the possible advantage of applying

either form in the frequency domain is indicated .

The Velocity/Depth Spectrum

The concept of a velocity/depth spectrum has been well

described in the literature by LePichon, ~~ing, and Houtz (1968),

- 5— - - - .- 
~~~~~~~~~~~~~~~~~~~~~~ -.~~~~~~~ 5____ ___. ~— .———-5 ., -- -—-—-—-- .-. ~ 
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Taner and Koehler (1969), and others. It is an estimate of

the coherent power received from a reflecting surface at a

given depth and at a given RMS velocity . The data set, com-

posed of N channels of recordings from the N surface positions,

is scanned in an iterative process with the estimator. For

each combination of depth and velocity the data is windowed

according to the travel time model, and an estimate of the

coherent power in the windows is made to form the spectral

estimate. A sample spectrum is given in Figure 2.1.

There are several ways commonly used to display velocity!

depth spectra ; this one shows the estimated power as the

displacement of plotted traces. In most of the work which

follows we prefer to display the spectra in contour plots of

the power levels in 6 dB increments. Because of the simpli-

city of the equations and the ease of correlating the spectra

with the original time traces of the data , we always consider

depth in the units of seconds of two—way travel time. Our

units of velocity are RMS meters per second.

An idealized example of velocity/depth spectra estimation

is given in Figures 2.2 and 2.3. Figure 2.2 gives the time

traces from 8 channels showing reflected returns from four

interfaces. As the data is scanned with the estimator, the

windows are delayed according to a travel time model such

- -5 -  --~~~~~ ‘~~~~~~~~ -- - -—..— -~~~~~~
_ -—- -----~~~~~ - - - —  -
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Figure  2 .1  Samp le Velocity/Depth Spectrum .
From USGS. Used wi th  permission .
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Figure 2 .2 Simu lated Data Set Showing Windows Properly
Delayed for Third Reflector.
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Figure 2.3a Data Windows With Velocity Too Small.

LHL~~1111111
Figure 2.3b Correct Delay of Data Windows.

Figure 2.3c Data Windows With Velocity Too Large.
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as we calculated in the previous chapter. The windows in

Figure 2.2 are shown delayed for a velocity and depth cor-

responding to the third reflector . As the velocity in the

travel time model is incremented in the scanning process , the

window delays are shifted appropriately. Examples of the re-

suiting windowed data for several shifts in velocity are

given in Figure 2.3a through 2.3c. Changes in the depth

(normal incidence travel time) shift the windows in a similar

manner , although much more uniformly up or down the trace for

all the channels. For each delay pattern specified by the

combination of each depth and each velocity, the data is

windowed and an estimate of the coherent energy in those win-

dows is made. The signals (though not necessarily the noise)

in the windows in 2 .3b are coherent across all 8 channels, and

our estimate of the coherent power in these windows will be

much larger than the estimate for the windows in Figures 2.3a

and 2.3c. This estimate of the coherent power as a function

of the velocity and depth of the delay model forms the

velocity/depth spectrum. The results of the velocity/depth

estimation procedure for the idealized data in Figures 2.2

and 2.3 are given in Figure 2.4. The four reflectors are in-

dicated by ~~ 
and the estimates corresponding to the three

sets of windows in Figure 2.3 are indicated by 4 .
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Seismic Reflection Data

Before examining the estimation algorithms in any detail ,

we first examine the form of the data and the source signa-

ture. The entire estimation procedure, and the windowing in

particular, are ultimately dependent on the expected form of

the returning wave front. A typical example of data is shown

in Figure 2.5. This is data taken with WHOI’s 6 channel

system on Georges Bank in August 1975. Reflection wavefronts

are indicated in the time display by hyperbolic patterns of

varying degrees of curvature. Two of these are indicated on

the figure. The velocity spectrum of this data was given in

Figures 5 and 6 in the Introduction . The set of returns

from an interface is not always obvious , even to the trained

eye. They vary for different interfaces and, to some extent,

from channel to channel. The characteristics of the reflected

wave are a function of the source signature and the dispersive

and attenuation characteristics of the travel path medium .

The characteristics of various seismic sources have

been studied and classified (Kramer, et al. 1968). The out-

going signal for our data is a pu lse from an array of Bolt

PAR airguns. A typical outgoing signature is given in Figure

2.6. It is a relatively wideband signal of approximately

250 to 500 ms. duration . The frequency power spectrum is
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Figure 2.5 Sample 6 Channel Data.

Common Depth Point Gather.
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Figure 2.6 Airgun Signature. 3 gun array.
( from Kramer , et al, 1968 )
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Figure 2.7 Frequency Spectrum of Gun Signature.
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given in Figure 2.7. The spectrum is quite peaked at the

natura l compressional frequencies of the air descharge bubble.

This signal undergoes phase changes, dispersion, and selective

attenuation as it travels through the sediment structure.

Since the travel paths for the N channels of data differ in

length , and usually to some extent in composition, there will

be a modification of the signal as a function of time (travel

distance) that will vary somewhat from channel to channel.

To the extent that the signal from a given reflector is co-

herent across the array, our coherent power measurement func-

tions well. Any incoherence across the wavefront creates

difficulties with its measurement which we will address later

when we are considering the sensitivity of the estimation

procedure to noise and signal incoherence.

Partitioning of the Estimation Procedure

In this section we look separately at the two basic

operations making up the estimation procedure — the windowing

and the coherent power estimate. Each can be used alone to

produce a form of spectrum . Our reason for doing so is two—

fold. By examining each aspect separately, we can better under-

stand the whole and how each par t contributes to the overa ll

resolu tion and accuracy of the complete estimator. Secondly,

— —  — — —~~~~~~~ — 
—
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our proposed processor differs from the conventiona l in only

one of the aspects, the coherent power estimate, arid an under-

standing of the role of this part enables us to place limits

on any improvements we hope to achieve. In considering a

spectral estimate without the coherent power estimate, we

replace that operation with a calculation of the total power

that is present in the windows. For the case of only using

the coherent power estimate, we lengthen the windows until

they include the entire data trace. In this  way both forms

are still estimates of the power in the data as a function

of velocity and depth.

In Figures 2.8 and 2.9 we present the two forms of

spectra run on idealized data containing four reflectors.

Figure 2.8 gives a contour plot of the spectrum which relies

solely on windowing for its resolution. The points of inter-

est are the relatively sharp delineation of the reflectors

in depth , but the rather poor delineation in velocity . Figure

2.9 gives the spectrum of the same reflectors calculated using

only the conventiona l coherent power estimate. In this case

there is poor resolution along a line which, as we show in

the next chapter, is defined by

2
T0 C = constant 

-- - -
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Figure 2.8 Velocity/Depth Spectrum Calculated From
Incoherent Arrival Times. Four Reflector
Simulated Data With No Noise. Linear
Contour Spacing .
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Figure 2.9 Velocity/Depth Spectrum Calculated From
Conventional Phase Measurement Without
Windowing. Four Reflector Simulated
Data. Linear Contour Spacing.
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From the general nature of the two forms of spectra and

their order of application, we observe that the windowing

provides most of the resolution in the time dimension, and

the coherence measurement then provides the resolving power

in the velocity dimension. In both of these forms of spectra

we note that the resolution is significantly better at shal-

lower depths. It is interesting that the coherence measure-

ment alone completely determines the reflector parameters in

the shallowest region. The wavefront exhibits the most

curvature (as determined by the travel time equation) in the

very near field of the array and the wavefront shape is unique

for a given depth. In this region the focusing of the array

is analogous to holographic methods. If the entire geologic

region of interest were in this holographic focusing region,

we could dispense with some of the stringent windowing require-

ments. But such is not often the case, and we recall that

this is also a region where the travel time equations start

to break down due to refraction effects. The area where

we have the most to gain from new coherence measurement tech-

niques is in the velocity resolution in the intermediate and

far end of the Fresnel region.1 In these regions the change

1We define the Fresnel region as being the region where the
reflectors are shallow enough that the curvature of the
wavefronts is still significant over the array length, and
the planewave approximations of the wavefront are not valid .
The term is commonly used in optics. 
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in wave front curvature for a given change in velocity is

relatively small , and any improvements in resolving power

effectively improve the resolution and the operating range

of the array.

Conventional Estimator

In conventional array theory , a processor which calcu-

lates the coherent power received by an array is called a

beaxnformer. A simple beamformer corrects the phase of the

signal from each element to correctly “steer ” the array, and

then sums the outputs. Since the phasing is a function of

f requency , it is often convenient to work in the frequency

domain. The conventional estimate of the total coherent

power is given by

a
N

L 2.1
f jv~

where is the frequency domain representation of the

signal from channel i,

and is the phase correction at frequency f for

channel i.

This estimator can be modified by multiplying each channel

by a weighting coefficient in order to taper the array, and

thus modify its resolution and sidelobe structure. But for
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any form of the conventiona l beamformer, we note that the

weights, and hence the resoluticn and beampatterns, are

constant with respect to the data being looked at.

In the development of velocity/depth estimation, the

traditional approach has been to use an algorithm in the

time domain. We can easily show that our simple beamformer

is equivalent to an un—normalized “semblance criteria ” as

developed by Taner and Koehler (1969). Applying Parseval’s

theorem to Equation 2.1, we obtain

N
p = ~~ 2.2

t

The phase shifts become delays in time, and the summation

in time is over the data window used by the Fourier transform

when going to the frequency domain.

Returning to our frequency domain representation , we

now introduce a vector notation. We let Y(f) be a vector of
the data and ~(f) be a steering vector of phase shifts

Using this notation , the conventional estimator

becomes

p = > f E
f
Y Yt

E] 2.3 
.
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:

The quantity [Y~~ J is a matrix of products and cross pro-

ducts of the frequency terms from the Fourier transforms.

For Gaussian data, this is an estimate of the covariance

matrix of the process (Anderson, 1958). We denote the co-

variance matrix by R.

.f.
R(c) = Y (ç) y(~ ) 2 . 4

We note that R(f) is hermitian; it is conjugate symmetric

complex, and is different for each frequency of the trans—

form. Collectively, the set of covariance matrices contain

all the relative phase information of the N data windows.

In final form, we can write

2.5C 
ç

Adaptive Estimator

The simple beamformer has a beam pattern which is directed

to look at the amount of coherent energy in the desired in-

coming wave through the use of the proper delays. The weights

on the elements in this beamforming process are held constant,

so that the basic shape of the beam pattern and the associated

—--5 - --5—. .5— - ~~~~~ __. __~~_5___~ - - -.- .—~~~~~~~ —-- ~~~~~—-— 
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sidelobe pattern for a given focus (velocity and depth) do

not change. But more importantly, they do not depend upon

the data in any direct manner. In order to optimize the

signal—to—noise ratio when there are other wavefronts in

the viewing field , we would like the beam pattern to adapt

to the data being processed. By changing the weights of the

array elements, the beam pattern may be controlled such that

the peak and sidelobes of the pattern are kept away from the

directions that may interfere with the estimation at a

particular desired direction .

The data adaptive algorithm we are incorporating is

called the high resolution Maximum Likelihood Method, or MLM.

It was developed for wave-vector analysis for the large aper-

ture seismic array (LASA ) in Montana by Capon (1967). Our

application differs from previous uses in that the field

being measured does not consist of plane waves. The data

field is non-homogeneous, or spatially non-stationary. This

characteristic rules out most other data adaptive methods

that are in popular use.

The MLM is based upon the design of a minimum noise

unbiased estimator. The estimator is constrained to pass the

desired wave (phase or delay pattern) with no distortion ,

while optimally suppressing any noise fields. The resulting 

—-5 -~~~~~~ —- --5- -
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estimator is identical to the maximum likelihood estimate

if the input signal field is a multi-dimensional Gaussian

process ) The concept of the MLM of wavenumber estimation

is to calculate the average power that this unbiased , or

maximum likelihood, estimator has as a function of the steer-

ing wavenuinber, Ic. There are several ways to arrive at the

MLM wavenumber estimator formula; and we present one which

has an intuitive appeal based upon the unbiased array pro-

cessor. Similar discussion can be found in Edeiblute , et al.

(1967), Capon (1969) , and Lacoss (1971)

The unbiased estimator for a plane wave with a wavenumber

k operating in the presence of a noise field with a spectral

cross correlation matrix , R, is given by2

- __________— 

~~~~ 
‘ c, .~~~~ ~~~~~~ 

2.6

where (f) is the cross spectra between array elements

i and j  at frequency f, and

1The maximum likelihood estimator is the one which gives as
its estimate the parameter set which has the maximum
probability of producing the received signal. (see Van
Trees, 1968)

2We use notation similar to Lacoss (1971).

~ 
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T

I —1i~~L, e

is a steering vector consisting of the phase shifts required

for each array element. Now, if the noise field is applied

to the minimum variance unbiased array processor , it passes

the component in its steered direction without attenuation

and rejects the rest of the field in the manner which mini-

mizes the output variance. Ideally, then, the output vari-

ance should indicate the intensity of the component in the

steering direction , and this is defined as the MLM wavenumber

estimator formula.

SM~J~,(k) 4 ~..a()ç.)

[~~~~~k R ’(f) 
~
)j 2.7

The final step is to employ an estimate of the cross spectral

correlation matrix.1

LM(k) = I 
2.8

1Capon and Goodman have derived formulae which specify the
fluctuation introduced by using an estimate of the cross
correlation matrix. Essentially , their resu lts show that
one loses N degrees of stability in the MLM formula when
one has a multi—dimensional Gaussian process.

F- 
* 
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The form of the MLM estimator can be compared with the more

conventional beamformer estimator,

= 
I ~~~~~ 2.9

We observe that additional computation required essentially

consists of inverting the cross spectral matrix , which is a

minor computational load when compared with that of estimating

the matrix and scanning across the parameter set.

In modifying the MLM adaptive spectral estimation algo-

rithm for use in estimating velocity spectra, one major modi-

fication is required, and this is the introduction of windows .1

For depths or normal incidence times in excess of that where

there is holographic resolution by the phasing across the

array , the only way that one can obtain resolution in depth

is to use a sequence of window sets which are positioned as

a function of depth. Since the velocity also influences the

position of the windows , especially at the more distant ele-

ments, these windows are positioned as a function of both depth

and velocity . The net effect is that one essentially has a

local estimate of the cross spectral matrix and a resulting MLM

1Almost all previous applications of the MLM algorithm have
implicity employed windows; but here their role is more
important because of the inhoinogeneity of the spatial process. 

-- ,--
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velocity spectra estimate around each window position .

The presence of this windowing procedure introduces a

tradeoff which turns out to be quite important in estimating

the cross spectral matrix. (In fact, understanding the

presence of this tradeoff proved to be one of the more subtle

issues of this investigation.) The conflicting issues in

this tradeoff may be summarized as follows: Good depth reso-

lution and suppression of interference from reflectors at

different depths requires multiplication by short duration

windows in the time domain. This, however, implies a smearing

of the data , especially the phase, across the bandwidth of

the window which increases as the window is shortened . We

analyze this tradeoff in more detail in Chapter 4.

With these comments on the use of windows, we define

the MLM velocity/depth spectra estimate to be

= { E~~ ,e:1) ~~Tc: f )  ~~(t ,~~~ )] 2. 10

where

~~~c:f) = ~~ y(~~c:c)y~T,C:f) 2.11 

~~~~ --~~~~~~--~~~~~~~~~~~~~~~~~~~~~
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which is an estimate of the covariance based upon transforms ,

‘~i~,(rc:f) , of the data within windows positioned around depth
T and velocity C; and where E(~ 0,&f) is a steering phasing

vector in the direction of the desired depth and velocity

parameters 
~ 

and ~ . If we compare the form of the MLM

velocity/depth estimator to the conventiona l beamforming

procedure based upon coherency measure, we observe that it

is completely analogous to comparing the MLM and conventiona l

wavenumber estimators.

Finally, we note that the estimator is a function of

frequency and is applied to discrete frequency bands of the

Fourier transform . The characteristics of seismic data are

such that this partitioning of frequency is often desirable.

Real ref lecizing horizons are often wavelength selective

because of the finite thickness of the impedance transition

region . Maintaining separate estimates over frequency not

only gives sharper resolution of this type of reflection , but

gives some insight into the nature of the reflecting surface.

~1 
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Chapter 3 Beam Patterns and Ambiguity Functions.

Introduction

— In the general Introduction we presented the on-axis

beam patterns of linear arrays looking at a single plane

wave in wavenumber space. These gave us some insight into

the high resolution capabilities of the adaptive array.

In this chapter we examine the conventiona l beam pattern

of an array looking at hyperbolic waves in velocity-time

space. This will provide us with a much better indication

of the resolution of the beamforming process which we looked

at in a superficial manner in the last chapter.

The general function we need to define this resolution

is the parameter ambiguity function . The ambiguity function

has been described as the response of a matched filter to

a mis-matched signal. In the case of an array processor ,

it is the normalized response of a steered array to waves

other than the primary focus. We consider a uniformly spaced

linear array as shown in Figure 3.1. The array may be steered

to receive waves from various directions by adding appropriate

delays to each element. For plane waves and a linear array.

the ambiguity function is given by

- -  -- ~ _ —- - —--______ L_ . 
- —: - -  -

.5 —5 ---5 - —~~~ —.5



- - - .  - - - - - -5 - . 5 . 5- 5 - _ 5 - _ - - ---~~~~~ - -———--

58

Figure 3.1 Plane Wave Incident on a Uniformly Spaced
Discrete Array.
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where the steering function 
~/‘(k s) 

is given by
I ~~~

A~dk sin~~ 3.2

• and m (N-l)/2, N = number of elements in the array. By

modifying the form of the exponent in Equation 3.1, it is

easily seen that we can form the ambiguity function for the

array response to non—plane waves. In the case of wide angle

ref lect ions from horizonta l layers , the wave may be specified

by the RMS travel time model. We then have the ambiguity

function in terms of velocity and depth.

w - ,J~ ÷ii~~~~)

~~~~~~~ * L 
e. C,

j~~I

This is the complex monochromatic ambiguity function . For

a case where we had a signal that was zero phase, we could

simply weight the complex monochromatic ambiguity function

by the frequency spectrum of the signal and integrate over

frequency to obtain a wide band ambiguity function. Kline

(1976) studied this wideband function and found greatly

increased resolution capabilities. With a signal  of unknown

- — - _ - - ---5-- - - - -  —- —- - - - - — --.--~ - -
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~- -—-- -—- ---—— 
____



~

60

phase characteristics, the ambiguity functions (and signals)

add incoherently across frequency, and we must resort to

integrating the absolute magnitudes of ambiguity and signal

over frequency. We continue to weight by the frequency

spectrum to account for changes in signal strength. Our

wideband ambiguity function becomes

= k f ~
c S(c) j~

(
~~j~~)/ 3.4

= fdf 5(f)

The velocity-time ambiguity function is not solvable in closed

form , and thus requires numerica l solutions or approximating

functions. Kline (1976) derived approximations for the peak

shapes and peak widths of this function for monochromatic

and narrow band cases which prove useful when optimizing

parameters for beam width or sidelobe structure.

Looking at the monochromatic ambiguity function , we

find a large region of ambiguity stretching along a line

defined by

2 _ 2
T
1C1 

— T2C2 = constant 3.5
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When focusing on (T1,C1), the array will respond almost

equally well to any return falling on the line defined by

Equation 3.5. We note that this ambiguity is independent

of frequency. The half power points as approximated by

Kline (1976) are

T~C~~ 
= ± c~~J 3.6

where L
eq 

is the equivalent length of the array. For a

discrete element array, the equivalent length is

Leq = (N-1)d 3.7

Figure 3.2 gives a contour plot of an exact monochromatic

ambiguity function calculated for T1 = 2.0 seconds, C1 2000.

m/s, f = 20 Hz, and N = 12. The wideband ambiguity function

as applicable to our data is the sum of monochromatic ambi-

guity functions at discrete frequency points obtained by the

fast Fourier transform of sampled data . The general form of

the ambiguity function is not changed , although the peak is

better defined . An example is given in Figure 3.3 for T
1 =

2.0 seconds, C
1 

= 2000. m/s, f = 20., 24., 28., and 32. Hz,

and N= 12.
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Figure 3.2 Monochromatic Ambiguity Function. -
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Figure 3.3 Discrete Frequency Ambiguity Function.
Four Frequency Components.
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Discussion

We see that the array focusing - the coherent power

estimate — allows us to resolve a reflection return to a

one dimensional strip or line in velocity—time space. We

depend on the time windowing to provide resolution along

the length of this strip. The effect of applying the adap-

tive processor will be primarily to reduce the width of the

strip. The time windowing will continue to carry the load

of resolution along the length of the strip. Going to a

wide band estimator does not produce any significant improve-

ments in the ambiguity function . Higher frequencies give

improved resolution , but our primary reason for applying

a wideband estimator will be for improved signal—to-noise

ratios. In the next chapter we investigate the windowing

to remove the ambiguity along the strip, and in Chapter 6

we see how reducing the width of the strip greatly enhances

the overall resolution of the velocity/depth estimator.

—— —- - 5
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Chapter 4 Estimation of the Cross Spectral Correlation
Matrix.

Introduction

Both the MLM and the frequency domain implementation

of the conventional semblence criteria for estimating velo-

city/depth spectra involve determining the cross spectral

correlation matrix in one way or another. In applications

to stationary homogeneous signal fields this typically in-

volves averaging over transformed segments of the data from

each of the channels. In the application to velocity/depth

spectra, however, the transient nature of the reflected

signals requires a windowing operation, particularly for

resolving along the depth, or time coordinate. The details

of the cross spectral correlation matrix estimation involving

this windowing operation are critica l, for the errors and

biases introduced propagate directly into the final spectra l

estimate. The estimation of this matrix has proven to be

the most subtle aspect of our experiments in applying the

MLM to velocity/depth spectra estimation .

The procedure for estimating the cross spectral corre—

lation matrix using a window is shown schematically in Figure

4.1. At a given frequency the diagona l components of this

ma tr ix are mea sures of the energy at each channel, while the

--- --5- —.- .. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~_ . ——- ---4 -
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off-diagonal terms are indicative of the coherent energy

and its relative phasing from channel to channel. The two

most important aspects in the estimation of these components

are the smearing, or bias , and the variance. As in any

spectral estimation problem there are inevitable tradeoffs

between these two quantities; the windowing, however , further

complicates this issue. In this chapter we examine some

aspects of estimating this matrix - both the smearing intro-

duced by the windowing and the various ways of averaging to

improve the stability of it.

4-A Windows and the Bias of Transforms

The spectral correlation matrix is estimated using the

direct or FFT method of spectral analysis, so the first step

involves analyzing the bias introduced by windowed Fourier

transforms. In this section we examine this by first intro-

ducing a stochastic model for the reflected signal from which

we can calculate bias errors using established methods of

spectral analysis. Then we examine the effects of windowing

on an airgun source signature which ideally should be repre—

sentative of the signal reflected from a horizon. Finally,

we use estimates of allowable positiona l errors determined

from the results of the stochastic analysis to derive bounds
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on perturbations of the moveout parameters T0, ~ for main-

taining a particular level of average bias in the windowed

transforms.

We model the reflected signal observed at an array element

as a desired signal plus an additive noise, or

Y(t ) = 4(t -~~) ÷ n(t) 4.1

where 4(t) is the reflected signal at the array element

which arrives with a total travel time delay

or moveout of

ii(t) is an additive noise which may include both

ambient noise and reverberation from other

horizons.

As indicated in Figure 4.1, the windowed transform operation

consists of multiplying the signal by a window function

centered at t,. and then Fourier transforming, or

~~Y(t) w(t- ~) 4.2

(We use continuous time notation , although in practice the

FFT algorithm is used.) We specify the windows to have a

half width duration of M seconds, and some commonly employed

.5— ——--—-5’. 
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windows are indicated in Figure 4.2.

If there were no windowing and no noise, i.e. w(t) = 1.,

n(t) = 0., the result of the transformation would be

A ~~~ir~Y

~~~~(f) 
= J(ç) e 4.3

which consists of the desired signal transform and a linear

phase shift from the traveltime delay. Both the windowing

and the additive noise term introduce errors in this, so one

actually obtains

A ~J 21~~~
J (1) = 5(4 t-i ) + n(t)) w(t -T~) e ~t 4.4

It is convenient at this point to define the error, since

this is what we wish to quantify. We have

w _ 2 .lT f t

E(f ) = {~~(t-Ts)(w(t-t)-1) + ~ (t) W(t- ) J  e cIt 4.5

Qualitatively, the duration of the window, M, introduces a

tradeoff. A long window leads to low resolution of the

depth and higher noise in the transformation ; however, it is

relatively insensitive to its exact positioning and intro-

duces little bias or smearing. Conversely, a short window 

~~~~~~--- —-- - -—.~~~~~ - — ~~-~~~~~ -—-— -- - - - . --—- -5 - - -— — - ---—---- ,— —— - - -, --- --
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Figure 4.2a Commonly Used Windows in the Time Domain.
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leads to higher resolution in depth and lower noise; however,

it is very sensitive to its exact positioning and can intro-

duce significant bias, or smear ing of the frequency domain

signal.

For our stochastic analysis we model the reflected

signal as

.4(t) = a(t) ‘ta) 4.6

where a(t) is an envelope function of approximate durat ion

7~ 
(half width) which models the transient, or

short duration nature of the reflected signal;

~ (t) is a wideband stationary process which models

the waveform var iation of the signa l within

the duration of the envelope.

If we assure that the signal and the noise are uncorrelated

processes, we can determine the mean square error by squar ing

and averaging Eq. 4.5. If we express all of the correlations

in terms of their associated spectra , we obtain

I E(~~ 
= 

- J S~(v~ ~ f a(t-t)(w(t-i ) -t) dir 4.7

di d~ 
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where and are the power density spectra of the processes

x(t) and n(t) respectively. We next assume that these spectra

are essentially constant across the bandwidths of the window

w(t) and the envelope Q(t). (This is a common assumption in

spectral analysis.) We then can take them outside the integrals,

and after using Parseval’s theorem we obta in

2.
= 5 (~) f (a(t-ii)(w(t-.T~) —1 )) ~~ 4.8

+

The details of this derivation are given in Appendix I. The

first term describes the error introduced by the duration and

position of the window with respect to the desired reflected

signal, while the second term describes the effects intro-

duced by the additive noise. We consider each of them separ-

ately.

The noise term is easy to analyze. For almost any

reasonable window, one can demonstrate that

5~(f) 5 w~(t) dt 
~ 4.9

where is a window factor whose precise va lue depends

.5 - - —— ~~~—- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~
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upon the shape of the window, but typically ranges from

.5< }~~<2. The most important observation is that the RMS

va lue of t1~ noise increases as J~~, so one wants to avoid
excessively long windows for noise as well as resolution

considerations.

The signal term is generally the more important one,

and it is somewhat more difficult to analyze. First it is

convenient to normalize it simply for the purposes of com-

parison. The mean square value of the desired signal with

no windowing is given by

3 (f) f Q ( t)  dt 4.10 
- -

~

The expression which quantifies tie relative effects of the

mean square bias error due to the windowing is then given by

~~~ t(T  
~

, i) = J
’[a(t)(w(t-~r) 

- 1) a
2
(t) 

~~ 4.11

where ~tI’rT4-t is the difference between the position of

the window and the center of the desired signal. The precise

shape of this function depends upon the particular window

and envelope employed . Figures 4.3 and 4.4 are indicative

of the general structure. Figure 4.3 was computed using

~ 
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Gaussian shaped functions for the window and envelope of the

form

~ir(1f
w(t) = e 4.12a

a(t) = e

Figure 4.4 was computed using Hanning windows for the shape

of both the window and envelope of the form

w(t) = f ( 1  + 4.13a

a(t) + cos(1T~)) 4.13b

Essentially these figures suggest that for less than a con-

servative 10% error in the average bias of the windowed

transform operation, one wants to keep the positional error

within ±0.1 (i.e. 20% of the effective window extent) and

use windows with ‘~~/M~~0.5, i.e. windows whose duration is

at least twice the effective signal duration.

To test the effects of windowing on actual data , several

tests were performed upon recorded airgun signatures, which

~ 
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ideally should represent the signal reflected from i horizon.

The signature and its unwindowed transform are illustrated

in Figure 4.5. One can estimate the energy distribution

about a central location by calculating the median signal

location and then computing the residual energy outside an

interval about that point. This suggests that t~~~0.12.

Figure 4.6 illustrates the windowed transform with no

positional error using the windows indicated in Figure 4.2

with a value of M = 0.128 secs., i.e. not conforming to our

previously suggested design guideline of ‘7 /M 0.5. One

can observe that there is some evident spectral smearing,

but the windowed trasform is basically accurate. (One needs

to compensate visually for the phase jumps at ±lras a shift

of 2tP in phase is equivalent.) Figure 4.7 is a more sensitive

indication of the accuracy of the windowed transform with

respect to positional error. Here we have plotted the phase

deviation from linearity for the 10 Hz component as the sig-

nature is delayed through the window. We can observe that

for only two of the windows is there a comparatively narrow

range of ±0.012 sec., or 4T/M~~0.1 where the phase deviation

is within ±15° for an error of 30%. This is essentially in

agreement with Figure 4.3 which predicts that for 1~ /M 1.,

the error should be constant at 28% for AI7M<0.1, and then

‘— - 5 
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Figure 4.5a 300 cu. in. Airgun Signature (including
water surface image).
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Figure 4.6 Frequency Spectra Estimates of Gun
Signature Using Various Lag Windows.
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Figure 4.7 Variation From Linear Phase Shift of
Gun Signature Moving Through various
Windows.
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increase significantly thereafter. Figure 4.4 gives similar

results for the Hanning wind~~s.

The final step in our analysis of bias error introduced

by windowing i~ to translate the tolerance in positional

error to allowable perturbation in normal incidence time, T ,

and velocity, C. Essentially, we have that if changes in

these parameters produce large positional arrors around a

normal moveout curve for the array elements, then we requ ire

a dense scanping in estimating the spectral correlation

matrix. Obviously this is an added computational burden

which one would like to avoid.

We can perform this analysis by taking the total deriv-

ative of the normal moveout relationship,

~ 
(T0, ~~, x~) + (xf/cf 4.14a

_ z~r - 
4.14b

This can be man ipula ted into the form

oi~(1, C, x1) C°S — Sin C 4.15

where ~ T~~’[ x1/~i~] 4.16

5—- 1____________,_____ — -----5 -5 ~~‘——- —.5 —
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The easiest way to employ this relation is to note that the

maximum effects of a change in 41 are when 4!f~~0. and in

4C when ~3~~90°. We can use a worst case analysis for a

nominal T , C by considering the situations at =0. and

— Ta.,~ ~~~~~~~ 
where is the array element

with the most distant offset.

As a simple example we consider a velocity analysis for

a 2.5 km. array at T0 = 3. secs. and ~ ranging from 1.5

km/sec to 4.5 kin/sec. From our previous analysis we allow

a positional error of ±0.025 secs which is divided equally

between that caused by ~1 and that by L~~C. We then have

for the allowable normal incidence time change

P
~
Iax 

~~~ I ~ • 01Z5 3ec~s

or 
I 

~~~~~~~~~~~~ I ~ • OJ Z c  Sec.S. 4.17

For the allowable velocity change

7~~~ 4, 4) -
~~~~~ 

ma~ AG • O1Z5~ .sec.s . 4.18

At C = 1.5 km/sec this implies

-a

_ _ _ _ _ _ _ _ _ _ _ _



= max ~ .02.3 kvii/sec, 4.19

while at ~ = 4.5 km/sec it implies

- iO.S ° , max 
~~~ ~ .556 km/sec. 4.20

Obviously the positional errors are more sensitive at the

lower velocity, which requ ires a denser selection of nomina l

parameters for T , ~~~~. The results for velocity increments

for the same 2.5 km array for a range of velocities and

depths are plotted in Figure 4.8. Note the large increments

that are allowed in the deep, high velocity region.

Discussion

We now can set up the iteration over velocity and depth

in an optimum manner. We scan the estimator on increments

corresponding to the finest resolution that we can expect in

the given dimension. In time the increment is determined

by the length of the signature and the length of the data

window. In velocity it is dependent on the array spacing

and length, on the frequency, and on the estimator form used .

The results of -t - is last section offer relief, however , from

the necessity of having to form a new covar iance matrix for
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Figure 4.8 Maximum Velocity Estimate Increments versus
Velocity and Depth of the Estimate for a
2.5 km Array.
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each increment of the estimator. The estimate can be per-

formed on the same matrix without appreciable degradation

over a range specified by Eqs. 4.16 and 4.17, and Figure 4.8.

4-B Aver~9i9 and the Stability of the Cross-SpectralCorrelation Matrix.

In the previous section we concentrated upon producing

an estimate of the cross spectral correlation matrix which

had a minimum of bias . In this section we consider the other

aspect of this estimate, that of its variance or stability .

The stability of the estimate is essentially determined by

the deterministic components and the available number of in-

dependent degrees of freedom in reducing any random components.

The deterministric , or mean, components are indicative of

the presence of reflection horizons, while the random ones

represent the variation that one observes in the reflections

from them. The random components may be caused by variations

between the travel paths of adjacent shots , dispersion be-

tween different frequencies, or errors caused by random

noise. In this section we examine the methods by which one

may increase the stability of the estimate. We reserve until

the following chapter a discussion of the statistics and

probability models for the estimators. The probabalistic

models for describing a non-linear estimator with

-

~

- . - - . 5- --

~

--

~
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many controlling parameters tend to become intractable.

By first considering how one goes about stabilizing the

estimate, we gain some insight into the description of the

statistics of the complete estimator which we examine in

Chapter 5.

The primary mechanism for increasing the stability of

a spectral estimate is one of averaging over blocks of data.

Within the constraints of our windowing requirements there

are two domains over which one can average to reduce the

variance of the estimate - across shots and across frequency.

This averaging of the data may be performed at several positions

before, within, and after the application of the estimation

procedure, each with slightly differing results. These

positions are indicated in Figure 4.9. The two averaging

domains are sufficiently diff erent from each other that each

bears a separate set of comments.

The possibility of averaging over successive shots is

suggested by the similar ity of signals produced by closely

spaced shots. The estimate is improved only if the signals

being processed are coherent in some respect across the shots

being averaged, and the noise is uncorrelated. The effective-

ness of this is then a function of the horizontal homogeneity

of the medium and the distance between shot points, as well
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as the control of the array geometry and the stability of the

airgun signatures. For a horizontal planar structure and

closely spaced shot points, the signal may be coherent over

many shots and extensive averaging is poss ible.

There are two respects by means of which a signal may

be coherent over a shot sequence. In the first the wave—

form may repeat from shot to shot , and here a linear aver-

aging of signals , or their transforms (since the transfor-

mation is a linear operation) is appropriate. This is indi-

cated in the first two averaging columns of Figure 4.9.

Alternatively, the signal may very from shot to shot, but

the correlation and relative phasing may be stable. Here

a quadratic averaging of the cross products used in estimating

the cross spectral correlation matrix is appropriate. This

is illustrated in the third averaging column of the figure.

In estimating the matrix one can average across fre—

quency if the signals are broadband , and the relative phasing is

not severely distorted across the frequency band used. The

same concepts that appear in the analysis of conventiona l

planar arrays also appear here. (See Skolnik, 1962). The

basic calculation that is performed is to compute the bandwidth

of the array about a nominal center frequency. For the case

of a simple linear array in a field consisting of a single

Ii__ _._-_~~_ .-~_ ——--5- - - ___.5__~—- ’-_ -5- - - - -  ——-5- --~ —- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _.__ :
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plane wave, we have a normalized response given by

= .1.. ~~~~~~~~~~~~~~ 4.21

where the steering function is given by

‘
~~ 

(1
~ ,c,, e,) = ~‘ d sn 0, 4.22

This is the plane wave ambiguity function. (see Eq.s 3.1

and 3.2.) For a correctly steered array, we have

c~ x C , 4.23

e,~~e.
Now, if we let f0 vary while keeping f1 fixed, we have

\ ,p p
N j!~, — SIfl G~,p1 ,,

X. e 4.24

The response to waves of other frequencies is dependent on

the propagation velocity and the angle of incidence, as well

as on the frequency shift. For the case of the bandwidth of

the array in velocity/depth estimation, the response to other

frequencies is given by

LT 
- .-  . . -

- - ~ LT-~~~~ 
-: ~~~~~~~~~ 

__________________________ _ _ _  —~~~~~~~~ --— -- - - -_-- - - - — - -5.-,---_ -
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N
= 

~~ 
e 

4.25

Because of the complexity of the geometry here, it is diff i-

cult to state anything very general. The array bandwidth

depends on the depth and velocity of focus, as well as on the

array geometry . For the adaptive processor, the increased

resolution will decrease the array bandwidth signif icantly,

although this is even more difficult to quantify.

These comments, however , do not hold for averaging a—

cross frequency in column 5 of Figure 4.9; averaging the final

estimate. Averaging at this point produces a wideband esti-

mate as described in Chapters 2 and 3. Here there is no

longer phase information and the estimates average coherently

as long as the information in the two frequency bands is

consistent.

We have found that in regions with a reasonable amount

of horizontal homogeneity, the velocity/depth spectra are

quite consistent across adjacent or closely spaced shots.

(See Chapter 6) Averaging across shots in any of the posi-

tions is of some benefit. We have had mixed results, however,

in averaging across the frequency domain. In all of the

positions except column 5 the smearing has been noticeable.

In column 5 we have found that it is often useful to main-

tain the separate estimates over frequency . It appears that

—



-~~~~~- — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -~~~~~~~~

91

the reflection process can be frequency selective, with

horizons which are evident in a CDP profile appearing only

in some of the velocity/depth estimates versus frequency.

It may be possible to use this frequency selectivity con-

structively, either for the design of filters in subsequent

stacking operations or as a diagnostic tool in interpreting

the character of the reflection horizons.

Summary

The estimation of the covariance matrix from the data

is a critical step in forming the velocity/depth spectrum.

Two important aspects of this estimation are the time windowing

prior to transforming and the averaging of the data. The

optimum window shape and length is dependent on the reflected

signature. Once the window is determined from a tradeoff of

time resolution and frequency smearing, the bias due to

positional errors is easily calculated. Defining limits

for this bias , we can then perform the velocity/depth spectral

power estimate over a small range of depths and velocities

using the same estimate of the covariance matrix. Numerically, 
-

this can be a time saver. In practice we have found this to

work quite well for a range of velocities, but not for the

time increments, which depend on the window increments for

-- .—- -
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resolution . Averaging of the data reduces the random com-

ponents, but must be done with discretion. It is very seldom

that the return signals do not vary to some extent from shot

to shot, even in the best of conditions. Nature never quite

fol lows our assumtion of flat, laterally homogeneous layers

of sediments, and we rapidly begin to lose information if

we average very many data sets. Again experience with real

data provides the final answer, and we have had some of our

best results without averaging over shots, and summing over

frequency only in the final stage of the estimator. After

examining the statistics of the estimators in the next chapter,

we investigate the results of applying the estimators to

real data in Chapter 6.
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